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The Ising models have been applied for various problems on information sciences, social sciences, and so
on. In many cases, solving these problems corresponds to minimizing the Bethe free energy. To minimize the
Bethe free energy, a statistical-mechanical iterative algorithm is often used. We study the statistical-mechanical
iterative algorithm on complex networks. To investigate effects of heterogeneous structures on the iterative
algorithm, we introduce an iterative algorithm based on information of heterogeneity of complex networks, in
which higher-degree nodes are likely to be updated more frequently than lower-degree ones. Numerical ex-
periments clarified that the usage of the information of heterogeneity affects the algorithm in Barabási and
Albert networks, but does not influence that in Erdös and Rényi networks. It is revealed that information of the
whole system propagates rapidly through such high-degree nodes in the case of Barabási-Albert’s scale-free
networks.
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I. INTRODUCTION

In recent years, complex networks have been studied a lot
because of their importance as backbones of real complex
systems �1,2�. Many models have been proposed to capture
properties of real-world networks; the representatives of
them are small-world networks proposed by Watts and Stro-
gatz �3�, and scale-free networks proposed by Barabási and
Albert �4�. Much elaboration has made clear their topological
features such as the small-world property, the clustering
property, and community structures. Not only their topologi-
cal features, but also their dynamical properties have been
clarified. For example, it has been revealed that the scale-free
structure has large influence on dynamics in its heteroge-
neous structure �5–7�. It has been shown that the epidemic
threshold vanishes if their degree distributions have a power-
law form, P�k��k−�, where the characteristic degree expo-
nent � is lower than 3 �5�. Other dynamics are also important
in order to understand characteristic properties of heteroge-
neous structures. Indeed, there are many examples of dynam-
ics on complex networks, in which nodes are interacting
each other and a macroscopically functional behavior
emerges. Examples of these networks with dynamics are
neural networks in a brain �8�, Hopfield models in complex
networks �9–11�, protein folding �12�, and combinatoric op-
timization problems �13�.

While the heterogeneous structures of the complex net-
works have large influence on their dynamics, one can use
efficiently the heterogeneous property to control their dy-
namical properties. The usage of the heterogeneous proper-
ties has been studied a lot mainly from the viewpoint of

statistical physics. For instance, in epidemic dynamics, tar-
geted immunization schemes based on the degree hierarchy
work efficiently, which recover the epidemic threshold in a
case of the degree distribution P�k��k−�, where ��3 �14�.
Therefore, one expects that high-degree nodes, so-called
hubs, play important roles in the dynamics on the heteroge-
neous networks, and hence, one could use the heterogeneity
to make efficient algorithms in a wide variety of problems.
This is true in some cases, and an efficient local search al-
gorithm has been proposed, which efficiently uses informa-
tion of high-degree nodes �hubs� �15–17�.

The Ising spin system is one of the simple dynamical
models, and has attracted a lot of attentions by their theoret-
ical interests. In recent years, their theoretical analyses on
complex networks have been performed �18–21�. The Ising
spin system could represent various real world phenomena;
simple opinion dynamics in a society is described by two
Ising spin states. Moreover, the Ising spin system has been
used for many problems on information sciences such as an
artificial intelligence, image processing, error-correcting
codes, and optimization problems �22�. These problems can
be solved by minimizing the free energy with suitably se-
lected Hamiltonian. Though it is difficult to obtain exact so-
lutions of these problems, there are many cases in which
approximate solutions by means of the Bethe approximation
are sufficient to solve these problems. A statistical-
mechanical iterative algorithm, the so-called Belief Propaga-
tion method �23–25�, enables us to solve these problems. The
iterative algorithm yields solutions approximately equivalent
to those by means of the Bethe approximation. It has been
clear that the iterative algorithm is useful to solve many
problems on information sciences �24�.

Recently, Mooij and Kappen have studied the validity of
the Bethe approximation �26,27�. They have concluded that
the Bethe approximation is more powerful than the naive
mean field approximation. A relationship between the con-
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vergence property of the iterative algorithm and the spin-
glass phase transition has also been discussed, and it has
been revealed that the iterative algorithm does not work well
enough in the spin-glass phase. However, effects of hetero-
geneity of complex networks on the iterative algorithm have
not been discussed yet.

In the present paper, we discuss effects of heterogeneity
of complex networks on the iterative algorithm. To investi-
gate the effects, we introduce a statistical-mechanical itera-
tive algorithm in which higher-degree nodes are likely to be
updated more frequently than lower-degree ones. Applying
the newly proposed iterative algorithms to ordinary random
networks and scale-free networks, we reveal that information
of the whole systems propagates rapidly through the high-
degree nodes; the effects enable the iterative algorithm to
work efficiently.

The outline of the present paper is as follows. In Sec. II,
we introduce an Ising spin system. The Bethe free energy to
be minimized is also shown in Sec. II. The statistical-
mechanical iterative algorithms are explained in Sec. III. We
show numerical results in Sec. IV. The numerical results
show that the influence of heterogeneity appears remarkably
in the case of the scale-free networks. Finally, we draw the
main conclusions in Sec. V.

II. THE ISING SPIN SYSTEM

We explain an Ising spin model used in the present paper.
Mooij and Kappen �26,27� have discussed the spin-glass
phase transitions using the similar model.

We describe a graph G= �� ,E� as an undirected graph
without closed one-edge loops and multiple edges, where
�= �1,2 , . . . ,N� is a set of nodes and E� ��i , j� �1� i� j

�N� is a set of edges. We denote a set of neighbors on node
i as �i. Because there are no closed one-edge loops and mul-
tiple edges in the graph G, the adjacency matrix A
= �Aij � i , j��� is defined as follows: Aij =Aji=1 if �i , j��E,
and Aij =Aji=0 otherwise. The degree of node i, ki, represents
that node i is connected to ki other nodes; hence ki= ��i�
=	 j��Aij.

On the graph G, we consider a random Ising model which
is described by the Hamiltonian

H = − 	
�i,j��E

Jijsisj , �1�

where si represents an Ising spin on node i and takes the
value +1 or −1, and Jij is an interaction between nodes i and
j. Each interaction Jij is different from the other. We here
denote the probability density function of Jij as PJ�Jij�. From
the Hamiltonian of Eq. �1�, we calculate the corresponding
Boltzmann distribution over the configurations, s
= �s1 ,s2 , . . . ,sN�� �−1, +1�N, as follows:

P�x� =
1

Z
e−�H =

1

Z



�i,j��E

�ij�si,sj� , �2�

where Z is the partition function �or one may say that Z is the
normalization constant�, and � the inverse temperature. The
notation �ij�si ,sj�=exp��Jijsisj� is introduced for simplicity.

Next, we write the free energy of the Hamiltonian of Eq.
�1� by means of the Bethe approximation. To obtain the
Break free energy, the cluster variation method is used, in
which the Bethe free energy is represented as a function of
the marginal probability distribution, i.e., pij�si ,sj� and pi�si�.
As a result, the Bethe free energy is written as follows
�25,28�:

FBethe„�pi�si��,�pij�si,sj��… � − 	
�i,j��E

	
si=±1

	
sj=±1

pij�si,sj�ln�ij�si,sj�

+ 	
i=1

N

�1 − ki� 	
si=±1

pi�si�ln pi�si� + 	
�i,j��E

	
si=±1

	
sj=±1

pij�si,sj�ln pij�si,sj� . �3�

In many problems on information sciences, we require the
solution minimizing the Bethe free energy of Eq. �3�. We can
easily see that the paramagnetic solution is a possible solu-
tion:

�si � 	
si=±1

sipi�si� = 0, �4�

�sisj � 	
si=±1

	
sj=±1

sisjpij�si,sj� = tanh Jij . �5�

For small values of the interaction terms �Jij�, the Hessian of
FBethe at that point makes sure that the solution is minimum
�26,27�.

For simplicity, we here assume that the interactions �Jij�
are independent Gaussian random variables with mean 0 and
variance 1. In this case, it has been shown that at the critical
inverse temperature �c, the Ising spin system causes the tran-
sition from the paramagnetic phase to a spin-glass phase
when the inverse temperature � increases �26,27�.

III. STATISTICAL-MECHANICAL ITERATIVE
ALGORITHM

A. Update procedure

The statistical-mechanical iterative algorithm, so-called
Belief Propagation, is often used in various problems
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�23–25,28,29�. The iterative algorithm calculates the solution
which minimizes the Bethe free energy. Though the
statistical-mechanical iterative algorithm is often performed
by a synchronous update method, we use an asynchronous
update method to investigate effects of heterogeneous struc-
tures on the iterative algorithm. The asynchronous update
method of the statistical-mechanical iterative algorithm
needs an update list in which the node numbers to be updated
are listed. Figure 1 shows one of the examples of the update
list. In this case, at first we update the information related to
node 4, and at the next step, update the information related to
node 26. If we reach the end of the update list, one iteration
procedure is finished.

The iterative algorithm by means of the Bethe approxima-
tion is as follows:

Step 1. We set initial values of �mij�sj� � i , j���. These
initial values are chosen randomly with an uniform distribu-
tion �0�mij�sj��1�. The value mij�sj� is called a message
from node i to node j in state sj.

Step 2. We set m̃ij�sj�⇐mij�sj�. The values �m̃ij�sj�� rep-
resent old states, which are needed to evaluate a convergence
condition introduced later.

Step 3. We set a node number in the update list as the
value of i. If it is the first step in one iteration procedure, we
use the first node number in the update list, otherwise we use
the next node number following the one used in the previous
step.

Step 4. For the nearest neighbor nodes of node i, i.e., j
��i, we update mij�sj� as follows:

mij�sj� ⇐
	si

�ij�si,sj�
k��i\j
mki�si�

	sj�
	si

�ij�si,sj��
k��i\j
mki�si�

. �6�

Step 5. Until we reach the end of the update list, we repeat
Steps 3 and 4.

Step 6. When we reach the end of the update list, we say
that one iteration procedure is finished. We here calculate the
following convergence condition:

1

2�E� 	i��
	
j��i

	
sj

�m̃ij�sj� − mij�sj�� � 	 . �7�

If not convergent, we back to Step 2, otherwise calculate
pi�si��i��� using the following equation:

pi�si� =

k��i

mki�si�

	si�

k��i

mki�si��
. �8�

Then, a local magnetization of Ising spin i, �si, is calculated
by

�si � 	
si=±1

sipi�si� . �9�

The pair probability distribution pij�si ,sj� is calculated by the
similar procedure; the details of the iterative algorithm are
denoted in Refs. �24,25,28,29�. After the iterations, we get
the solution �pi�si�� and �pij�si ,sj�� which minimizes the Be-
the free energy of Eq. �3�.

B. Making the update list

Methods of making the update list used in the update
procedure are arbitrary; an uniformly random update list is
usually used, in which each node number is selected at ran-
dom. However, we expect the following assumption: “Usage
of heterogeneity of complex networks makes algorithms and
dynamics more efficient.” As the simplest case, we here as-
sume that high-degree nodes play an important role in the
scale-free networks; the update of the information of the
high-degree nodes causes large effects on the next update
step because the information of the high-degree nodes could
be used a lot in the next update step. Therefore, to investigate
how large the high-degree nodes influence on the iterative
algorithm, we compare results obtained by two different up-
date lists; one is made by the ordinary random procedure,
and the other is generated by using the information of het-
erogeneity of the network structures.

These update lists are made by the following procedure.
The making procedures are illustrated in Fig. 2.

1. Method A (ordinary update list)

�A1� Two regular sequences are set. Each regular se-
quence has N components, and each node number is listed
only one time in each sequence.

�A2� We randomly select a number from these two se-
quences. The selected number is stocked into the update list.

FIG. 1. One of examples of the update list. We use node num-
bers in the update list in turn.

FIG. 2. Two methods for making the update list. �a� Ordinary
update list in which all node numbers are selected at random only
two times. �b� Preferential update list in which high-degree nodes
are likely to be chosen as update nodes. This preferential update
procedure uses the information of heterogeneity of the complex
network structures.
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Once a number is selected, the number is removed from the
sequences.

�A3� We repeat the procedure �A2� until there are no num-
ber in the two regular sequences. Note that when the proce-
dure is finished, there are 2N numbers in the update list, and
each node number is listed only two times.

Unlike method A, we make the preferentially selected up-
date list using the information of the network structures in
method B. In this case, we use the information of a degree of
each node.

2. Method B (preferential update list)

�B1� One regular sequence is set. The regular sequence
has N components and each node number is listed only one
time. Additionally, one preferential sequence is set. In the
preferential sequence, each listed number is selected with the
probability proportional to its corresponding node’s degree;
hence, nodes with higher degree tend to be selected more
frequently than those with lower degree.

�B2� We select a number from these two sequences at
random. The selected number is stocked into the update list.
Once a number is selected, the number is removed from the
sequences.

�B3� We repeat the procedure �B2� until there are no num-
bers in the two regular sequences. Note that when the proce-
dure is finished, there are 2N numbers in the update list. In
the update list, each number corresponding to each node is
listed at least one time, and several numbers emerge a lot
because of their high degree.

Intuitive pictures of effects of those methods are illus-
trated in Fig. 3, in which the messages denoted by bolder
arrows are updated more frequently than thinner ones. Figure
3�a� shows the update procedure using method A. In Fig.
3�a�, all arrows have the same width, which represent that we
update all messages in the same frequency. On the other
hand, in Fig. 3�b� each arrow has a different thickness de-
pending on its degree. For instance, node i has a lot of con-
nections to other nodes. In the update procedure of messages
related to node i, messages of many other nodes are needed,
see Eq. �6�. Furthermore, the updated messages on the node
i are used for the other update procedures on the many other
nodes. Since the messages on high-degree nodes are fre-
quently updated in method B, it is seems that information of
local update is easily propagated to the whole system. Then,
we expect that method B works more efficiently than method
A for the heterogeneous networks like the scale-free net-
works.

IV. NUMERICAL RESULTS

A. The number of iteration steps

To investigate effects of heterogeneous structures on the
iterative algorithm, we performed numerical experiments. In
the numerical experiments, two network structures were
used. One is the random network proposed by Erdös and
Rényi �ER networks� �30�, and the other is the scale-free
network proposed by Barabási and Albert �BA networks� �4�.
The ER networks have homogeneous network structures, in

which each node has the similar degree though there are
some fluctuations; the degree distribution of the ER networks
is the Poisson distribution. On the other hand, the BA net-
work is the representative of the complex networks with het-
erogeneity, in which there are a few high-degree nodes,
which is often called hubs, and a lot of low-degree ones; the
degree distribution is P�k��k−3.

In all the numerical experiments, we use the networks
with the network size N=400, the average degree �k=6.0.
As for the convergence condition of Eq. �7�, we here set 	
=10−6. If 1000 iterative procedures do not make the system
convergent, we consider the system is not convergent and
finish the update procedure. In addition, as far as we
checked, messages �mij� are oscillated in the nonconvergent
realizations. We have performed the calculations for 200 dif-
ferent realizations in which the network structures and inter-
action terms �Jij� are different from each other. All quantities
discussed below are averaged over only convergent realiza-
tions.

Results for the case of the ER networks are shown in Fig.
4, and Fig. 5 shows those of the BA networks. Figures 4�a�
and 5�a� show the number of iteration procedures needed for
satisfying the convergence condition of Eq. �7�. The percent-
age of convergent realizations in 200 different ones is shown
in Figs. 4�b� and 5�b�. As the inverse temperature � in-
creases, the number of convergent realizations decreases at
some critical inverse temperatures �c in both cases of ER
and BA networks, though ER and BA networks have the
different critical inverse temperatures. We can consider the
phenomenon as the phase transition from the paramagnetic

FIG. 3. Intuitive pictures of the update procedures. �a� Ordinary
update method �method A in Fig. 2.� �b� Preferential update method
�method B in Fig. 2.� The messages represented by bolder arrows
tend to be updated more frequently than those with thinner arrows.

OHKUBO, YASUDA, AND TANAKA PHYSICAL REVIEW E 72, 046135 �2005�

046135-4



phase to the spin-glass phase, as discussed by Mooij and
Kappen �26,27�. To confirm this, we calculate the Edwards-
Anderson order parameter

qEA �
1

N
	
i��

�si2, �10�

which becomes positive after the transition to the spin-glass
phase. Figures 4�c� and 5�c� show the Edwards-Anderson
order parameter qEA as a function of the inverse temperature
�. At the point from which the number of convergent real-
izations decreases, the Edwards-Anderson order qEA be-

comes positive �31�; this suggests that the system is in the
spin-glass state above the critical inverse temperature �.
Note that there is not an external field and hence the positive
value of qEA does not indicate the ferromagnetic phase. In
the spin-glass state, it has been shown that the statistical-
mechanical iterative algorithm does not work enough well
�26,27�. While improvement of the worse convergence prop-
erty of the statistical-mechanical iterative algorithm would
be needed for future works, it is beyond the scope of the
present paper. Near the critical inverse temperature �c, we
see remarkable improvement of the number of iteration steps
needed for convergence in the case of the BA networks, see
Fig. 5�a�. Near the critical inverse temperature �c, the num-
ber of iterative procedures needed for convergence of

FIG. 4. Results of the numerical experiments in the case of the
ER networks. �a� The number of iteration steps needed for conver-
gence as a function of the inverse temperature �. �b� The percentage
of convergent realizations in 200 different realizations. �c� The
Edward-Anderson order parameter qEA.

FIG. 5. Numerical results for the case of the BA networks. �a�
The number of iteration steps needed for convergence. �b� The per-
centage of convergent realizations in 200 different realizations. �c�
The Edward-Anderson order parameter qEA.
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method B is 0.6 or 0.7 times as many as that of method A.
Furthermore, the percentage of convergent realizations in the
case of method B increases in comparison with that of
method A near �c. On the contrary, for the ER random net-
works, both methods A and B give similar results because of
the homogeneity of the ER networks, as shown in Figs. 4�a�
and 4�b�.

Finally, we note the correctness of the solution. In the
paramagnetic phase, all the numerical solutions yield �si
=0. Hence, both algorithms give the correct solution. How-
ever, it is hard to evaluate the correctness of the numerical
solutions in the spin-glass phase; it is difficult to obtain the
exact solution in the spin-glass phase. We have compared the
Bethe free energies of the numerical solutions because a so-
lution with a lower value of the free energy corresponds to
more correct one, and confirmed that the free energies calcu-
lated by both algorithms have similar behavior to each other.
Therefore, we consider that both algorithms give similar so-
lutions while more detailed discussion would be needed in
future research.

B. Effect on messages

To investigate how the proposed update algorithm effects
on the update procedure, we next investigate the property of
message mij�sj� in Eq. �6�. We here define the following
quantities to characterize the influence on the update proce-
dure:


mij�sj� � �m̃ij�sj� − mij�sj�� , �11�

�
mij�sj�k = �	
i��

�ki,k�−1 	
i��

�ki,k

2��i� 	j��i
	
sj


mij�sj� ,

�12�

where �ki,k
is the Kronecker delta. The quantity 
mij shows

the change of each message between the old iterative proce-
dure and new iterative one. The quantity �
mij�sj�k shows
that the averaged change of messages over nodes with degree
k. Figure 6 shows the changes of the messages related to the
nodes with degree k, i.e., �
mij�sj�k. In these numerical ex-
periments, we used the inverse temperature �=0.2 in which
the both systems on the ER and the BA networks converged
in all realizations. In the case of the ER networks, methods A
and B have similar results as for �
mij�sj�k, though method
A makes the change of messages a little larger, as shown in
Fig. 6�a�. On the contrary, in the case of the BA networks,
method B makes the changes of messages �
mij�sj�k larger
than method A for low degree region k�60. This suggests
that the frequent updates related to high-degree nodes make
the change of the messages on low-degree nodes larger, and
hence, the number of iteration steps decreases because the
larger changes of messages cause rapid convergence to the
solution.

Distributions of the change of messages 
mij�sj� are
shown in Figs. 7�a� and 7�b�. Each inset in Fig. 7 is an
enlarged figure at large 
mij�sj� region. In the ER random
networks, method B makes no difference from the case of

method A. In the BA networks, as suggested in Fig. 6�b�,
method B makes the changes of messages larger than those
of method A. The inset of Fig. 7�b� shows that method B
makes the distribution of 
mij�sj� a little up compared to the
one of method A, which suggests that method B work well in
the case of the BA networks. It is valuable to note that in
both cases the distribution of 
mij�sj� shows the power-law
form with the degree exponent −1, as shown in Figs. 7�a�
and 7�b�, while it is beyond the present paper to clarify why
the distribution obeys a power-law form, so-called Zipf’s
law.

V. CONCLUSION

In the present paper, we have investigated effects of het-
erogeneity of complex networks on statistical-mechanical
iterative algorithms. Numerical experiments have shown that
the usage of information of heterogeneity affects the algo-
rithm in BA networks, but does not influence that in ER
networks. It has been revealed that high-degree nodes play
important roles in the iterative algorithms; the usage of in-
formation of degrees makes the statistical-mechanical itera-
tive algorithm more efficient in the case of the BA networks.
At the critical inverse temperature, the system has transition
from the paramagnetic phase to the spin-glass phase. Near
the critical inverse temperature �c, the number of iteration
steps needed for convergence decrease, and the percentage of
convergence increases in the case of the BA networks. In the
case of the ER networks, however, the usage of information
of degrees does not make differences.

The changes of messages used in the iterative algorithm
have also been investigated, and it becomes clear that the

FIG. 6. The averaged changes of messages over nodes with
degree k. �a� in the case of ER networks. �b� in the case of BA
networks. In both cases, we set the inverse temperature �=0.2.
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newly proposed iterative algorithm causes larger changes of
messages in the BA networks. This result agrees with intui-
tive pictures that the system converges fast when there are
the larger changes of the messages. These results show that
the information of the whole system propagates rapidly
through high-degree nodes, and hence, the usage of the het-
erogeneity makes the iterative algorithm more efficient.

We conclude that the heterogeneity is important for the
iterative algorithms and the usage of the heterogeneity makes
it possible to perform the iterative calculation efficiently.
While the current study is meaningful as a first step of im-
provement of the statistical-mechanical iterative algorithm,
one can consider other approaches to improve the iterative
algorithm. We used the heterogeneity of degrees of nodes in
the present paper, and other heterogeneous properties such as
the load or the betweenness centrality �32�, community struc-
ture �33�, and network motifs �34� for improvement of the
iterative algorithm. We think that the improvement of the
iterative algorithm is important for large complex networks.
In order to achieve the improvement, it could be helpful to
research the usage of the heterogeneity of network structures.
Additionally, these studies would also be valuable to under-
stand dynamical properties of complex networks.
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